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Abstract

Monitoring of loan performance and early identification of high-risk consumers
aids prevention of loan defaults and is of interest to many banks and investors.
For banks especially, timely monitoring ensures regulatory compliance as well as
adequately quantifying their risk, accurately calculating their capital and setting
aside proper reserves. With this goal in mind, four multi-classification models
have been built that take as input characteristics of a loan at inception, as well as
information about the first 12 monthly payments, and predict the status of these
payments over the next 12-month period.

1 Introduction and motivation

There is an extensive literature on application of machine learning algorithms to credit scoring, where
a model determines the relationship between default and loan characteristics. Once built, this model
is used to predict the probability of debt being repaid by the obligor. Review and comparison of these
types of models are provided in [1]-[3], with [4] focusing on assessing mortgage risk using a deep net
and [5] using a convolutional neural network.

As can be seen from these papers, most publications in consumer lending applications cover binary
classification, where a loan either defaults or it does not. Sometimes severe delinquency, defined as
having payments delayed by six months or more, is used as an alternative to the default. There are
several reasons for considering a multi-classification problem instead. Firstly, a lot of information is
lost if only default and non-default states are taken into account. For example, a loan with no missed
payments has a different creditworthiness profile to a loan where payments are late by one month
only but have occured several times during the initial term of the loan. Slightly late (between 30
and 180 days) payments can be a sign of declining financial health of the obligor. However, since
the loan has not technically defaulted, it will be marked as "good" by the binary classification and
remain unnoticed until the delinquency status deteriorates significantly. Differentiating between
the frequency of the occurrence and the delay magnitude of the payments would allow more
accurate tailoring of credit terms and conditions as well as enable early-warning signal detection
- since borrowers are likely to transition through different credit profiles throughout the life of the loan.

The aim of this paper is to investigate the technical feasibility of predicting several classes, or statuses,
of loan near-term delinquency and payment behaviour by considering a number of multi-classification
models. In this paper residential mortgage loan data has been used, but model architectures described
here can be applied to other types of loans as well - provided a suitable dataset is available for training.

The rest of the paper is organised as follows. Section 2 provides details on the construction of the
final dataset and feature analysis. Section 3 specifies model architectures and provides high-level



implementation details. Section 4 provides summary and analysis of results. Conclusions are drawn
in Section 5.

2 Dataset and features

2.1 Dataset construction

For this paper, publicly available Fannie Mae single-family loan performance data [6] has been
used. The population considered contains a subset of Fannie Mae’s 30-year, fully amortizing, full
documentation, single-family, conventional fixed-rate mortgages. This data provides information
about mortgage loans issued between 2000 and 2016 and their performance, e.g. late payments in
months, up to the fourth quarter of 2017. The original mortgage rate for each example has been
scaled by the average 30-year federal funds rate for the corresponding quarter to enable comparison
of mortgage loans issued over this 17-year period. Only entries with complete information were used
and records where loans were terminated prior to month 24 were discarded.

The input used in this paper has 20 features. The first eight features have been selected from the
numeric values in the available 24 fields characterising the loan: the original rate, the original
amount, the original loan-to-value (LTV), the number of borrowers, the debt-to-income (DTI) ratio,
the credit score of the borrower, the first three digits of the zip code and the mortgage insurance
percentage. These features have been normalised to speed up convergence of the gradient descent
and accelerate training. Please note that this static information is as of the loan initiation and is
not updated throughout the considered two-year period of the loan term. Additionally, statuses of
each monthly payment for the first 12 months of the loan term are utilised as the final 12 input
features. This loan performance information in the Fannie Mae dataset indicates the number of days,
represented in months, the obligor is delinquent as determined by the governing mortgage documents.
Here 0, for example, represents a loan that is current or is less than 30 days past due and the sequence
continues thereafter for every 30-day period.

The ground truth, or the true label, output has six classes with values ranging from zero to five and is
based on the actual loan performance over the months 13 to 24. This loan performance information
has been analysed both for the maximum number of days that payments were late and how frequently
payments were late in the dedicated period. Table 1 provides a definition for each class considering
12 consecutive monthly payments over the months 13 to 24. Each class value is converted into a
six-dimensional one-hot vector, where the class ¢ vector would have zeros everywhere apart from the
it" value, which is equal to one.

Class | Description

0 All monthly payments are made on time or less than 30 days past due.
Only one monthly payment is more than 30 and less than 60 days late.
More than one monthly payment is more than 30 and less than 60 days late.
Some monthly payments are more than 60 and less than 90 days late.
Some monthly payments are more than 90 and less than 180 days late.
Some monthly payments are at least 180 days late.

N | W =

Table 1: Class definitions.

Data is randomly shuffled and then split in such a way that 90% is used for training, 5% for cross-
validation and 5% for testing. In the original dataset of over 5 million data points ~ 93% of entries
belong to class 0. Please see Figure 1 for the class distribution histogram. This finding is as expected,
since most people would make payments on time in the first two years of their mortgage term.
However, this dominance of class 0 poses some challenges for training, such as model would tend to
predict this class all the time to achieve higher accuracy. Approaches for dealing with training an
imbalanced dataset, as applied in this paper, are discussed further in section 3.5.

It is worth noting that in order to predict loan payment delinquency status it is possible to use only
the first eight features discussed above. However, adding information about the payments for the first
12 months of the loan term allows comparison between very different model types and architectures.
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Figure 1: Class frequency distribution

2.2 Training dataset analysis

Getting to know data before starting work on building a solution is always recommended, hence,
in this section training dataset is analysed first. Before attempting to train a model, it should be
first determined whether or not there is a relationship between the variables of interest. There are
20 dimensions representing different features for each loan. In order to determine if there is any
relationship between these loan characteristics and the future delinquency status, and to visualise
structure of this data, it would be helpful to reduce the dimension to 2D.

In this paper, a t-distributed Stochastic Neighbour Embedding (t-SNE) technique is used to represent
each high-dimensional data point by a point on a two-dimensional grid (please see [7] for details).
These two-dimensional points tend to be close whenever the corresponding high-dimensional data
points are close. This results in clusters in the two-dimensional t-SNE scatter plot forming wherever
clusters are present in the original high-dimensional data. Note that PCA could also have been used
for analysis, however this method does not generally handle outliers or skewed distributions as well
as t-SNE.
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Figure 2: Sampled data Figure 3: Sampled data colour coded by class

Ten thousand examples are randomly selected from each class in the training data set and the
resulting t-SNE scatter plot is shown in the Figure 2, where each point on this graph represents
a loan. Figure 3 shows the same data, however each point is coloured depending on its class,
with white corresponding to class 0 and the darker the colour the higher the class. It can
be observed that there are obvious groupings, although boundaries between clusters are not
very clearly defined. It can be deduced that there is a relationship between loan features and



class, although some of these can be very intermingled. It can also be observed that there is
symmetry along the x axis and a feather-like structure spanning from the centre of the scatter
plot. If colour coding is applied by a certain feature, i.e. number of borrowers, mortgage in-
surance percentage and original LTV, the symmetry and shape can be explained as seen in Figures 4-6.

T-SNE can also be used for data anomaly detection if the points are coloured by each feature in turn,
as in [8]. Here, some examples are circled in red in Figures 3 and 6. These points could either be true
anomalies, for example, unexpected personal circumstances can prevent timely mortgage payments
(dark points in the middle white section of Figure 3), or can be data-entry errors (unusually low
LTV values in Figure 6). Further investigation will be required to determine the true nature of these
abnormalities.

e
b
Figure 4: Number of borrow- Figure 5: Mortgage insurance Figure 6: Original loan-to-
ers percentage value ratio

Now that a relationship between loan characteristics and performance and future delinquency status
has been confirmed, modelling solutions can be investigated.

3 Methods

Different model architectures are considered for the mortgage payment delinquency status prediction
problem. The definition of the problem and the dataset available enables comparison of four different
multi-classification model architectures, which have been implemented using TensorFlow, [9]. These
are a baseline model, a deep neural network, a recurrent neural network (RNN) and a one-dimensional
convolutional neural network (CNN). Figures 7-10 show high-level architecture for each model.
Prior to providing further model characteristics, computational details - common for all models - are
discussed.

3.1 Input and output

Each model, apart from RNN, has an input, X, with 20 features (eight loan characteristics at

inception and performance of the first 12 monthly payments) and an output prediction, Y, probability
distribution over the six classes, O to 5.

3.2 Softmax and cross-entropy loss

Unlike a binary prediction of whether a loan would default or not, predicting the delinquency status of
a loan - in other words, mapping to one of the six classes defined in Table 1 - is a multi-classification
task. Hence a softmax function is used as the activation in the output layer. The softmax function
takes a multi-dimensional vector and transforms it into a vector of real numbers, p; € (0, 1), which
add up to 1. It is computed as follows

eri
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Since the softmax function outputs a probability distribution over six classes, it is necessary to apply
argmax, which returns an index of the largest element in an array, to determine which class has the

softmax(xz;) = p; =



highest probability.

Cross-entropy loss is used as a loss function. Cross entropy indicates the distance between what the
model believes the output distribution should be and what the actual distribution is. The softmax final
activation function and cross-entropy loss function are used for all four models in this paper.

3.3 Metrics

In order to evaluate and compare performance of the four models implemented in this paper, several
metrics are considered. These are recall, precision, F1 score and Gini impurity index. Since the
dataset is highly dominated by class 0, overall accuracy will not provide enough information on how
well models predict classes 1-5 and in some cases it can even be misleading (e.g. 95% accuracy due
to 95% of the data belonging to one class).

First, precision and recall for each class are computed, where:
TP TP

precision; 7113 T FPZ, recati;

TP, +FN;’

Here, for a class i, T'P; stands for true positives (both prediction and true label belong to class ?),
FP; stands for false positives (prediction is for class ¢ but true label is class j, i # j) and F'N; means
false negatives (prediction is for class j and true label is class ¢, ¢ # j). Precision is a good measure
to determine when the costs of a FP are high. For example, incorrectly identifying an obligor as one
with deteriorating creditworthiness and imposing stricter credit terms or even terminating the loan,
will result in losing a valuable customer and is best to be avoided. Recall, on the other hand, is a
useful metric when costs of a FN are high. For example, an obligor who is getting behind on monthly
payments and remains undetected as he/she is not assigned to an appropriate deliquency class, can
later default and cause more issues for the loan originator.

F1 score is calculated as the harmonic mean of precision and recall, as follows:

F1, =2 x precision; X recall;

precision; + recall;

F1 score is a good metric when a balance between precision and recall is needed and there is an
uneven class distribution. In order to compute one score for each model, F1 values for each class
can either be averaged to obtain a macro F1 score or a micro F1 score, based on global precision,

TPy+..+TP5 TPy+...+TP; . -
TR fTP PPt TFP" and recall, TR TP T PNyt PN, can be used instead. Since

F1 scores for each class are provided separately, micro F1 score per model is chosen for this paper.

The final metric provides one number per model and is compared to the dataset used for training.
Gini impurity index for six classes is calculated as:

5
G=1- Z(pi)2a
i=0
where, for each 4, p; is the number of times that class appears in the dataset (true or predicted) divided
by the dataset size. The smaller the value of the impurity GG, the more skewed is the class distribution.
This metric is only used for the training set, where, due to the balanced mini-batch approach (see
section 3.4.1), the true label classes are equally represented and have G = 1 — 6(%)2 = 83.33%.

3.4 Working with an imbalanced dataset

Imbalanced datasets, where classes are not represented equally, are common in practice. As discussed
in section 2.1, it is expected that the vast majority of payments over the first two years of the mortgage
term would be made on time. In the paper two of many possible solutions proposed in [10] have been
implemented and discussed further in the next sections.

3.4.1 Balanced mini-batches

In order to ensure that a balanced dataset is used for training, one can either add repeated instances of
the under-represented samples or delete some instances of the over-represented class. It is not usually



desirable to delete any of the data and adding repeated class instances might have significant memory
restrictions if the original dataset is already large. In this paper, a balanced mini-batch selection
method is used, where an equal number of each class is sampled at each step and is iterated through
for training. It is worth noting that over-sampling can result in overfitting to the small training dataset
available for certain classes and relevant measures, such as regularization, would need to be applied
to reduce overfitting.

3.4.2 Weighted loss function

Given class imbalances in the training data, as shown in Figure 1, the model would tend to predict
everything as class 0 to achieve high accuracy. In order to address this issue, the loss function needs
to be re-weighted to apply higher penalties for making wrong predictions for classes 1 to 5 compared
to the dominant class 0. Median-frequency re-weighting, introduced in [11], is applied here and is
calculated as follows:

a. = median_freq/ freq(c).

Here freq(c) is the number of examples of class ¢ present in the mini-batch divided by the total
number of examples in the mini-batch and median_freq is the median of all class frequencies in
the mini-batch. For all models in this paper, in the training procedure, each example’s softmax
cross-entropy loss is multiplied by the coefficient, o, according to the label’s class, c. Therefore the
dominant labels will be assigned the lowest weight which balances out the training process.

3.5 Models
3.5.1 Baseline

Baseline is the simplest neural network architecture considered here and has a single node, as shown
in Figure 7. A linear transformation is applied to the input, X, and a softmax activation function is

used to produce a prediction, Y':
Z =WX+0,
Y = softmax(Z).

This model can be considered as a multi-classification analogue of a logistic regression.
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Figure 7: Baseline model architecture

3.5.2 Deep neural network

The deep neural network (DeepNN) model has five hidden layers, see Figure 8, with 200, 150,
100, 50 and 10 nodes respectively. All activations apart from the final one are ReLU, where
ReLU(z) = max(0, z). By introducing several hidden layers, the model is expected to capture
relationships between features and classes better and hence provide some improvement to the baseline
results.

3.5.3 Convolutional neural network

The convolutional neural network (CNN) model uses a one dimensional structure inspired by [5]
and has two blocks of convolutional and max pooling layers, followed by a fully connected layer, as
shown in Figure 9. Activation functions for layers other than final are ReLU. Input is 1x20 and output
is 1x7 based on the softmax final activation function. The first block has one convolutional layer with
32 filters with size 1x5, stride 1 and same padding, then max pooling layer with filter size 1x3, stride
2 and same padding. The second block has a convolutional layer with 64 filters with size 1x3, stride 1
and same padding, then max pooling layer with filter size 1x2, stride 2 and same padding.
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3.5.4 Recurrent neural network

This model is a many-to-one one-directional Long-Short Term Memory (LSTM) RNN with a softmax
activation applied to the last output only, as shown on Figure 10. The input sequence has 12 items,
one for each month of the observable monthly mortgage payment performance in the first year of the
loan. Each of the inputs has nine features, eight loan characteristics, which are the same for each
input, and one monthly payment performance for the relevant month. The LSTM hidden layer has
200 units. This model is one directional since the order of loan monthly payment statuses is very
important. Many-to-one architecture is used since prediction is needed for the payment status over
the months 13 to 24 of the loan term and not for each consecutive month in the first year.

4 Results

Models have been iterated over various hyperparameters and network structures to provide the best
test accuracy. Batch size 36, Adam optimizer, Xavier weight initialisation have been used for all four
models that were trained over ten epochs. Dropouts have been used for each layer in DeepNN and
RNN models to prevent over-fitting. Results are provided in Tables 2-3 and Figures 11-12.

G Baseline | DeepNN | CNN RNN | True Label
Training dataset | 81.26% | 81.91% | 82.07% | 83.29% 83.33%

Table 2: Gini impurity index for all models.

F1 Baseline | DeepNN | CNN RNN
Test dataset | 67.74% | 90.82% | 67.82% | 68.81%

Table 3: Micro F1 score for all models.

Examining results, a number of observations can be made. First of all, compared to the other models
considered in this paper, RNN has the closest Gini impurity index to the true label training dataset.



Baseline | DeepNN CNN RNN
Class 0 70.92% | 96.99% | 70.19% | 72.01% o8

Class 2
Class 3
Class 4

Figure 11: Recall for the test dataset

Baseline | DeepNN CNN RNN
Class 0| 97.39% | 95.31% | 97.54% | 97.43% o-8
Class 1
Class 2
Class 3

Class 5 82.22%

Figure 12: Precision for the test dataset

Baseline | DeepNN CNN RNN
Class 0| 82.07% | 96.14% | 81.63% | 82.81% o8

Class 3

Class 5

Figure 13: F1 scores for the test dataset.

Although Gini index does not provide information about how accurately class allocation is done, it
shows that both RNN and CNN have a more balanced class distribution compared to the Baseline
and DeepNN models, which is also reflected in training set accuracy results. The second observation
is that, based on the micro F1 score alone, DeepNN, CNN and RNN models show an improvement
over the Baseline, with DeepNN outperforming the other three models.

Finally, DeepNN, CNN and RNN models also show improvement over the Baseline for individual
class recall, precision and F1 values. From Figure 11 it can be observed that the DeepNN model has
the highest recall value for the class 0, however for classes 1-5 CNN and RNN alternate to present
the highest and the second highest recall values. Whereas, Figure 12 shows that the DeepNN model
significantly outperforms the other three models for precision for classes 1-5. It has a particularly high
precision for class 5, 82.22%, which is impressive considering that this class has the least amount of
data compared to classes 0-4. Since F1 score is a harmonic mean of recall and precision, the DeepNN
model has the highest F1 values for classes 0-2 and 4-5, whereas RNN has the highest score for class
3. Overall, if precision for classes 1-5 or F1 scores are more important, DeepNN is the best model
out of the four described in this paper, and if recall for classes 1-5 is important, then either CNN or
RNN would be a more suitable choice.



5 Conclusion

In this paper, four multi-classification models have been built to take as input characteristics of a loan
at inception, as well as information about the first 12 monthly payments, and predict the statuses of
these payments over the next 12-month period. The results for all four models have been presented
and recommendations for usage of each model provided, depending on the importance of each type
of metric. Unlike image classification, where all the information is contained in the pixels of the
image, the loan delinquency classification problem has a lot of extraneous factors (from personal
circumstances to economic environment), which are not captured in the loan application details and
can affect timeliness of obligor’s monthly payments. Although DeepNN, CNN and RNN models
outperform the Baseline, they can be further enhanced by considering more than the first 12 payments
as features. Another approach could be supplementing with current/savings/credit account data as in
[5] or with county-level unemployment rates, zip-code level housing prices, and lagged foreclosure
and prepayment rates in zip-code as in [4] to help improve models’ performance.
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